Studies on the formation of whiskers and platelets of B₄C and BN

R. V. KRISHNARAO, J. SUBRAHMANYAM

Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500058, India E-mail: rvkr4534@yahoo.com

The formation of whiskers and platelets of B_4C and BN has been studied through carbothermal reduction of B_2O_3 . In the absence of any additive, neither whiskers nor platelets have formed from B_2O_3 and carbon black. K_2CO_3 which forms a low melting liquid and NiCl₂ which act as catalyst in gasification of carbon were used to facilitate the growth of whiskers and platelets. NiCl₂, K_2CO_3 , carbon black and B_2O_3 were reacted in a weight ratio (NiCl₂:K₂CO₃:C:B₂O₃ = 5:5:12:17.4) and studied the formation of B_4C and BN in the temperature range of 940°C to 1500°C in 1-atm. argon and 1-atm. nitrogen respectively. Whiskers and platelets of different sizes have formed at 1100–1500°C. The whiskers have been observed to form by vapor-liquid-solid growth mechanism. The effect of NiCl₂ and K_2CO_3 on the morphology of B_4C and carbon has been studied. NiCl₂ and K_2CO_3 have been found to accelerate the growth of whiskers and platelets.

© 2004 Kluwer Academic Publishers

1. Introduction

Whiskers are used to reinforce metallic, ceramic, and polymeric materials. Though ceramic whiskers have been synthesized with a variety of chemistries, including SiC, AlN, TiC, TiN, Si₃N₄, B₄C, and Al₂O₃, the most developed and commercial whiskers are those based on SiC [1]. Al₂O₃ reinforced with 25–30 wt% SiC whiskers is the material of choice for inserts used in high-speed cutting of high-nickel-content alloys. Cutting speeds of up to 450 m/min with reasonable life times could be achieved [2]. The superior behavior of the Al₂O₃-SiC composite is not observed when machining steels. Recently attempts were made to develop other whisker materials that are more chemically stable than SiC and suitable for cutting stainless steel [3]. Whisker materials with different thermal expansion coefficients are required to reinforce different metallic materials.

The development of new whisker materials has focussed mainly on carbides, nitrides and carbonitrides of transition metals such as Ti, Ta, and Nb [4–7]. There are few reports [8–13] on formation of TiC and TiN whiskers. Nygren *et al.* [8] used TiO₂, carbon, and MCl (M = Li, Na, or K) as raw materials, and Ni as a catalyst. TiN whiskers were formed in nitrogen, whereas argon is used for TiC whiskers. Recently, Krishnarao *et al.* reported a process involving vapor-liquid-solid (VLS) growth mechanism for the formation of TiC [12] and TiN [13] whiskers. However, not much attention has been paid to produce boride whiskers particularly TiB₂ and B₄C whiskers. TiB₂ and B₄C are very useful refractory compounds with outstanding hardness, excellent wear resistance and high strength. B₄C is a lightweight (2.52 g cm⁻³), and very hard (microhardness 2840 Kg mm⁻²) high temperature refractory material with a melting point 2447°C. It exhibits high flexural strength (380 MPa) and Young's modulus (574 GPa). It possesses a moderate co-efficient of thermal expansion 5.73×10^{-6} K⁻¹.

 B_4C is known to retain its hardness up to a temperature of 1300°C in a reducing atmosphere [14]. It is highly resistant to erosion and abrasion [15]. Typical applications of B_4C are light-weight armor, high-temperature thermoelectric conversion elements, sliding bearings, seal rings, and wear parts such as nozzles. Chapmam *et al.* [16] developed aluminium boron carbide cermet brake pads for automotive brake applications. In contrast to asbestos or semimetallic brake materials, Al-B-C has very high strength, stiffness, hardness and thermal conductivity.

There are few reports [17-19] on the growth of B_4C whiskers and filaments. Zhang et al. [20] reported a process for the growth of B₄C nanowires and arrays of nanoparticles by plasma-enhanced chemical vapour deposition. Recently Carlsson et al. [21, 22] reported a carbothermal reduction process for synthesis of TiB₂ and B₄C whiskers. They [22] used B₂O₃, and carbon as basic raw materials. Metallic powders of Co/Fe/Ni were used to form liquid catalyst to grow B₄C whiskers by VLS mechanism. NaCl was used to supply Co and B as CoCl₃(g) and BOCl(g) to catalyst liquid droplet. More recently, Krishnarao et al. [12, 13, 23] reported a process involving vapor-liquid-solid (VLS) growth mechanism for the formation of TiC, TiN and TiB₂ whiskers. Similarly in the present work, K₂CO₃ which forms a low melting liquid, NiCl₂ which is well known

TABLE I Purity of reactants used for synthesis of B4C and BN

Chemical	Manufacture	Impurity level	
K ₂ CO ₃	Johnson Matthey,	Sr	3 ppm
	U.K., England	Mg, Na Ca, Fe, Li	l ppm <1 ppm
NiCl ₂	Qualigens Fine	SO_4	0.005%
	Chemicals, Ltd.,	Co	0.002%
	Mumbai, India	Fe	0.002%
H ₃ BO ₃	Qualigens Fine	SO_4	0.04%
	Chemicals, Ltd.,	Cl	0.01%
	Mumbai, India	Pb	0.002%
		As	0.0001%
C. Black	ack Philips Carbon Black Grade N220, ISAF-HM		
	Durgapur, India		

as a catalyst in carbon gasification, were used to aid the formation of B_4C and BN whiskers. Where as B_2O_3 , and carbon black were used as precursor raw materials for the synthesis of B_4C and BN.

2. Experimental procedure 2.1. Materials

Laboratory reagent grade NiCl₂ was supplied by Qualigens Fine Chemicals, Bombay-400075, India. Specpure K_2CO_3 was procured from Johnson Matthey Chemicals Limited, Hertfordshire, England. Carbon black of grade N774 was obtained from Philips Carbon Black Ltd., Durgapur, India. B_2O_3 was prepared from SQ grade boric acid obtained from Qualigens Fine Chemicals, Mumbai, India.The level of impurities in above chemicals is given in Table I.

2.2. Experimental

Initially, 12 g of carbon black and 17.4 g of B_2O_3 were taken in a plastic container and dry mixing using agate balls was done for 5 h. This mixture was designated as CB. No whisker formation was noticed in the CB samples reacted in argon at

Figure 1 XRD patterns of NKCB after reaction in argon at different temperatures.

Figure 2 XRD patterns of NKCB after reaction in nitrogen at different temperatures.

different temperatures. In the next mixture K₂CO₃ and NiCl₂ were added to aid the formation of whiskers. NiCl₂, K₂CO₃, carbon black and B₂O₃ were taken in weight ratio (NiCl₂:K₂CO₃:C:B₂O₃ = 5:5:12:17.4). Its equivalent molar ratio is $(NiCl_2:K_2CO_3:C:B_2O_3 =$ 0.15:0.144:4:1). Initially 5 g of K_2CO_3 and 17.4 g of B₂O₃ were taken in an agate container and mixing using agate balls was carried out for 5 h. 5 g of NiCl₂ and 12 g carbon black were added and mixing was continued for another 5 h. This powder mixture was designated as NKCB. After reviewing the results three more mixes were prepared to study the effect of potassium and nickel on the morphology of carbon and boron. NiCl₂, K₂CO₃, carbon black and B₂O₃ were taken in weight ratio similar to that of NKCB. These

three-component mixes are designated as NKC, KCB, and NCB.

Cylindrical graphite holder of 2.5-mm wall thickness and 40-mm inner diameter was filled with the powder mixture. The holder was closed with a graphite lid having a small hole allowing exchange of gasses between reactants and furnace chamber. The graphite reactor (sample holder) was placed in the hot zone of high-temperature graphite resistance furnace (ASTRO, U.S.A., Model 1000-3060-FP20). The furnace was evacuated to a moderate vacuum (5 \times 10⁻² torr) and back filled with 1 atm. argon or 1 atm. nitrogen. Experiments were conducted at 940, 1100, 1200, 1300 and 1500°C for 40 min. Temperature was maintained with a Model 939A3 Honeywell radiation pyrometer.

Figure 3 SEM photographs showing the morphology of: (a) CB reacted in argon at 1500°C, (b) and (c) NKCB reacted in argon at 1100 and 1200°C respectively.

Figure 4 SEM photographs showing the morphology of NKCB reacted in argon at: (a) 1300°C, (b) 1500°C and (c) vapor-liquid-solid grown whisker formed at 1300°C.

50 $\mu \pi$ Heating rate employed was $\approx 40^{\circ}$ C min⁻¹. The samples of NKC, KCB, and NCB were reacted at 1300°C in argon.

Reacted samples were analysed by X-ray diffraction (XRD). A Philips X-ray diffractometer, Model PW3710, with Cu K_{α} radiation through Ni filter was used. The morphology of the reacted powders was examined with a Leo 440i, scanning electron microscope (SEM). Scanning electron probe microanalysis (SEPMA) was carried out with CAMECA (model CAMEBAX-MICRO, France) equipment.

3. Results and discussion

After reaction at 940°C in argon/nitrogen samples appeared like unreacted dried powders. After reaction at 1200°C and above 1200°C, they formed fluffy sponge like cake. All samples except CB samples contained glittering particles. Peaks corresponding to B_4C were observed in all samples of CB and NKCB after reaction at different temperatures in argon (Fig. 1). Peaks of strong intensity corresponding to graphitic carbon were also observed. The intensities of B_4C peaks increased with increase in reaction temperature. However, the intensities of B_4C peaks of CB samples were lower than that of NKCB samples. In the XRD patterns of NKCB samples reacted in nitrogen, peaks corresponding to BN

were observed (Fig. 2). In BN samples peaks of strong intensity corresponding to graphitic carbon were also observed. The intensities of BN peaks increased with increase in reaction temperature from 1100 to 1500°C.

The morphology of samples after reaction in Ar at different temperatures is shown in SEM photomicrographs (Fig. 3). Neither whiskers nor platelets were observed in the CB samples reacted at different temperatures. The typical morphology of particulates of B_4C formed in CB sample is shown in Fig. 3a. After reaction at 940°C, the NKCB sample appeared like unreacted mass. Whisker formation was observed in the NKCB sample reacted at 1100°C. Typical vapour-liquid-solid (VLS) whiskers formed at 1100 and 1200°C are shown in Fig. 3b and c. At higher reaction temperature (1300 and 1500°C) thick and long platelets were formed (Fig. 4a and b). The formation of whiskers and platelets increased with increase in reaction temperature from 1100 to 1500°C.

The presence of potassium and nickel in the spherical tip (Fig. 4c) of whisker was identified through energy dispersive X-ray analysis (EDAX). Since the detection of boron through EDAX was difficult electron probe micro-analysis (EPMA) was used. The typical B_4C platelet formed at 1300°C is shown in BSE image in Fig. 5a. EPMA analysis of the platelet revealed the presence of boron and carbon. Nickel was observed in bright spherical particles only (Fig. 5d).

Figure 5 EPMA analysis of B_4C platelet formed in NKCB after reaction in argon at 1300°C: (a) BSE image, (b), (c) and (d) X-ray maps of boron, carbon and nickel respectively.

Figure 6 SEM photographs showing the morphology of NKCB after reaction in nitrogen at: (a) 1200° C, (b) 1300° C and (c) 1500° C.

The morphology of NKCB samples after reaction in nitrogen at different temperatures is shown in SEM photomicrographs (Fig. 6). After reaction at 940°C it appeared like unreacted mass. Whisker formation was observed in the sample reacted at 1200°C. At higher reaction temperature (1300 and 1500°C) thick and long platelets were formed (Fig. 6b). Typical VLS whiskers and platelets formed at 1500°C are shown in Fig. 6c.

The VLS whisker of BN formed at 1300°C was analysed trough EPMA (Fig. 7a). EPMA analysis of the whisker revealed the presence of boron and nitrogen. Nickel was observed in bright spherical particles only (Fig. 7d). The XRD patterns of NKC, KCB, and NCB reacted at 1300°C in argon revealed the effect of nickel and potassium on carbon and boron (Fig. 8). In the presence of potassium and nickel the carbon black, which is basically amorphous, is converting into graphitic carbon. When B_2O_3 is added B_4C is forming in the KCB system. In the NCB system, peaks of B_4C as well as graphite were distinctly identified. From XRD patterns of NKC and NCB it is clear that nickel in combination with *K* is very effective in forming the graphitic carbon and B_4C . From SEM analysis neither whiskers nor platelets were found in the NKC sample. Few very thick platelets and whiskers were seen in KCB sample (Fig. 9a). In NCB sample also whiskers and platelets were observed (Fig. 9b).

From the above results the formation of B_4C/BN whiskers can be explained as follows: The over all reactions of carbothermal reduction of B_2O_3 to form B_4C or BN are

$$2B_2O_3 + 7C \rightarrow B_4C + 6CO \qquad (i)$$

$$2B_2O_3 + 6C + 2N_2 \rightarrow 4BN + 6CO \qquad (ii)$$

When potassium and nickel are present in the system more complicated reactions take place. In CB samples no whiskers or platelets were formed (Fig. 3a). When K_2CO_3 was added few thick B_4C platelets were formed in KCB sample. However, no whiskers were seen in KCB (Fig. 9a). K₂CO₃ dissociates into K₂O and CO₂ at 891°C. K₂O can form a thin liquid layer around other particles and react with it. The important role of potassium is formation of a low melting liquid. For the precipitation of B₄C crystal, continuous supply of boron and carbon to the liquid droplet is required. K₂CO₃ alone could not accelerate the formation of platelets/whiskers. So the intensities of B₄C peaks were low in the KCB sample (Fig. 8). The intensities of B₄C peaks of NCB sample were higher than that of KCB sample.

This could be due to the catalytic affect of nickel in gasification of carbon. In the presence of NiCl₂ and B_2O_3 a complex K-Ni-B liquid droplet could form. This is confirmed from EPMA and EDAX analyses. Nickel increases the availability of carbon as CO and facilitates the growth of whiskers from a complex liquid droplet. The catalytic effect of nickel in carbon gasification is well known [24]. Iron, cobalt and nickel act as strong catalysts in gasification of carbon in carboncarbon dioxide reaction [25], and in water vapor and hydrogen [26]. By introduction of metal atoms into the carbon structure, more carbon monoxide is produced. So more quantity of CO is available in presence of nickel. Further, chlorine available from NiCl₂ reacts with B₂O₃ to form BCl.

$$B_2O_3 + 3C + 2Cl \rightarrow 2BCl + 3CO$$
 (iii)

Thus CO and BCl are continuously supplied to the complex liquid droplet of K-Ni-B. So large number of whiskers and platelets were formed in NKCB samples. From SEM photographs (Figs 3 and 6) it is clear that whiskers were formed at low reaction temperatures

Figure 7 EPMA analysis of BN whisker formed in NKCB after reaction in nitrogen at 1300°C: (a) BSE image, (b), (c) and (d) X-ray maps of boron, nitrogen and nickel respectively.

Figure 8 XRD patterns of NKC, KCB, and NCB after reaction in argon at 1300°C.

up to 1200°C. At and above a reaction temperature of 1300°C the formation of platelets was a predominant phenomenon. Neither whiskers nor platelets were observed in the absent of K_2CO_3 or NiCl₂ (Figs 3 and 9). These results show that platelets have also formed by VLS growth mechanism. The reason for

the formation of platelets at higher temperatures could be high rate of reaction and formation of large quantity of complex liquid. It appears that the formation of platelets can be avoided by decreasing the quantities of K_2CO_3 and NiCl₂. Further studies are required to establish optimum conditions to form either whiskers or

Figure 9 SEM photographs showing the morphology of: (a) KCB and (b) NCB after reaction in argon at 1300° C.

platelets. By incorporating these whiskers/platelets into ceramic/metal matrix their properties can be evaluated.

4. Conclusions

The formation of B_4C and BN through carbothermal reduction of B_2O_3 has been studied in the temperature range of 940 to 1500°C in 1-atm. argon and 1-atm. nitrogen respectively. B_2O_3 and carbon black were used as source of boron and carbon. K_2CO_3 and NiCl₂ were used to aid the formation of whiskers and platelets. NiCl₂, K_2CO_3 , carbon black and B_2O_3 were reacted in a weight ratio (NiCl₂: K_2CO_3 :C: $B_2O_3 = 5:5:12:17.4$). Whiskers and platelets of different sizes have formed at 1100–1500°C. The whiskers have been observed to form by a vapor-liquid-solid growth mechanism. The effect of nickel and potassium on the morphology of B_4C and carbon has been studied. NiCl₂ and K_2CO_3 have been found to accelerate the formation of whiskers and platelets.

Acknowledgement

The authors thankfully acknowledge the financial support received from the Defence Research & Development Organisation, Govt. of India in order to carry out the present research study.

References

- 1. D. J. BRAY, Bull. Amer. Ceram. Soc. 74 (1995) 152.
- J. HOMENY, in "Ceramic Matrix Composites," edited by Richard Warren (Chapman & Hall, New York, 1992) p. 245.
- 3. M. CARLSSON and M. JOHNSSON, *Ceram. Engng. Sci. Proc.* **21** (2000) 375.
- 4. M. JOHNSSON and M. NYGREN, J. Mater. Res. 12 (1997) 2419.
- 5. J.-B. LI, G. Y. XU, E. Y. SUN, Y. HAUNG and P. F. BECHER, J. Amer. Ceram. Soc. 81 (1998) 1689.
- 6. N. AHLEN, M. JOHNSSON and M. NYGREN, J. Mater. Sci. Lett. 18 (1999) 1071.
- 7. M. CARLSSON, M. JOHNSSON and M. NYGREN, J. Amer. Ceram. Soc. 82 (1999) 1969.
- 8. M. NYGREN, M. JOHNSSON, N. AHLEN and M. EKELUND, Europ. Patent, EP 0 754 782 A1, Jan. 22 (1997).
- 9. N. AHLEN, M. JOHNSSON and M. NYGREN, J. Amer. Ceram. Soc. **79** (1996) 2803.
- C. E. BAMBERGER, P. ANGELINI and T. A. NOLAN, *ibid.* 72 (1989) 587.
- C. E. BAMBERGER, D. W. COFFE and T. A. NOLAN, J. Mater. Sci. 25 (1987) 4992.
- R. V. KRISHNARAO, J. SUBRAHMANYAM and V. RAMAKRISHNA, J. Mater. Synth. Process. 9 (2001) 1.
- 13. R. V. KRISHNARAO, J. SUBRAHMANYAM and M. YADAGIRI, J. Mater. Sci. 37 (2002) 1693.
- 14. F. THEVENOT, Key Eng. Mater. 59 (1991) 56.
- 15. G. DE WITH, J. Less-Common Met. 95 (1983) 133.
- 16. T. R. CHAPMAN, D. E. NIESZ, R. T. FOX and T. FAWCETT, *Wear* **236** (1999) 81.
- A. GATTI, C. MANUSCO, F. FEINGOLD and R. MEHAN, in Proceedings of International Conference on Crystal Growth, Boston, MA, June 1966 (Pergamon, Oxford, 1967) p. 317.
- L. AHMED and G. G. CAPSIMALIS, in Proceedings of the 6th International Symposiumon on Reactive Solids, 1968 (Wiley-Interscience, New York, NY, 1969) p. 477.
- I. D. R. MACKINNON and K. L. SMITH, in "Novel Refractory Semiconductors" (Mater. Res. Soc. Proc., Pennsylvania, 1987) Vol. 97, p. 127.
- 20. D. ZHANG, D. N. MCILROY, Y. GENG and M. G. NORTON, *J. Mater. Sci. Lett.* **18** (1999) 349.
- M. CARLSSON, P. ALBERIUS-HENNING and M. JOHNSSON, J. Mater. Sci. 37 (2002) 2917.
- M. CARLSSON, F. J. GARCIA-GARCIA and M. JOHNSSON, J. Cryst. Growth 236 (2002) 466.
- 23. R. V. KRISHNARAO and J. SUBRAHMANYAM, *Trans. Indian. Ceram. Soc.* **61** (2002) 3.
- 24. P. L. WALKER JR., M. SHELE and R. A. ANDERSON, in "Chemistry and Physics of Carbon," edited by P. L. Walker Jr. (Marcel Dekker Inc, New York, 1968) Vol. 4, p. 287.
- 25. J. T. GALLAGHER and H. HARKER, Carbon 2 (1964) 163.
- 26. D. W. MCKEE, ibid. 12 (1974) 453.

Received 16 June 2003 and accepted 28 January 2004